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Abstract

Introduction:Phacomatosis pigmentokeratotica (PPK), an epidermal nevus syndrome,

is characterized by the coexistence of nevus spilus and nevus sebaceus. Within the

nevus spilus, an extensive range of atypical nevi of different morphologies may mani-

fest. Pigmented lesionsmay fulfill theABCDEcriteria formelanoma,whichmayprompt

a physician to perform a full-thickness biopsy.

Motivation: Excisions result in pain, mental distress, and physical disfigurement. For

patientswith a significant number of nevi withmorphologic atypia, it may not be physi-

cally feasible to biopsy a large number of lesions.Optical coherence tomography (OCT)

is a non-invasive imaging modality that may be used to visualize non-melanoma and

melanoma skin cancers.

Materials and Method: In this study, we used OCT to image pigmented lesions with

morphologic atypia in a patient with PPK and assessed their quantitative optical prop-

erties compared to OCT cases of melanoma. We implement a support vector machine

learning algorithm with Gabor wavelet transformation algorithm during post-image

processing to extract optical properties and calculate attenuation coefficients.

Results: The algorithmwas trained and tested to extract and classify textural data.

Conclusion:We conclude that implementing this post-imaging machine learning algo-

rithm toOCT images of pigmented lesions in PPKhas been able to successfully confirm

benign optical properties. Additionally, we identified remarkable differences in atten-

uation coefficient values and tissue optical characteristics, further defining separating

benign features of pigmented lesions in PPK frommalignant features.
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1 INTRODUCTION

Phacomatosis pigmentokeratotica (PPK) is a distinct and rare type

of epidermal nevus syndrome characterized by coexisting speckled

lentiginous nevus (SLN) of the papular type and nonepidermolytic

organoid sebaceous nevus.1 Patientswith PPK also presentwith extra-

cutaneous symptoms, which may include neurological, musculoskele-

tal, and ocular disorders, commonly correlating to the limbs affected

cutaneously.1–3 A systematic search retrieved 95 cases reported in

literature.4 PPK is hypothesized to be due to a single dominant het-

erozygous activating HRAS c.37G>A mutation, which causes the two

different types of nevi. The mutation affects a multi-potent progenitor

cells, which then gives rise to cutaneous and extracutaneous mani-

festations seen in PPK. Sebaceous nevus, otherwise known as nevus

sebaceous of Jadassohn, is a congenital malformation that involves

hamartomas of the pilosebaceous follicular unit. The coexisting SLN,

otherwise known as nevus spilus, is described as larger café-au-lait

macules with numerous nevi or smaller superimposed darker black

or brown melanocytic proliferations.5 Sizes of the nevi may range

from a millimeter up to 10 cm.2,5,6 Spitz nevi may also be found

within speckled lentiginous nevi of PPK patients.7–10 Within regions

of the SLN, secondary cutaneous manifestations are rare; however,

cases of malignant melanoma have been reported.3,11 Atypical nevi,

otherwise known as dysplastic nevi, are melanocytic neoplasms with

clinical features that may simulate melanoma (topographical asym-

metry, color variegation, large diameter [>6 mm]).12 Patients with

PPK may have atypical nevi that may be difficult to discriminate

from melanoma due to morphologic atypia. Often times, patients with

PPK or other nevus syndromes are subject to a significant number

of biopsies. Patients with PPK may have a high propensity of devel-

oping nevi with atypia, which can fulfill the “ABCDE” criteria for

melanoma.

PPK is a clinical diagnosis involving the identification of characteris-

tic symptoms of an epidermal nevus syndrome, comprehensive patient

history, and thorough physical examination.2 Additional testing, such

as full skeletal, should be performed. Routine central nervous system

(CNS) examinations are not standard unless the patient presents with

developmental concerns, CNS symptoms, or if the epidermal nevus

is largely present within the craniofacial distribution.2 Treatment of

PPK is primarily reserved for extracutaneous involvement, such as

limb length discrepancy, seizures, or ocular manifestations, while sur-

gical excision may be used to address symptomatic nevi and nevi with

clinically worrisomemorphologic atypia.

Generally, for melanocytic lesions, the gold standard for a clinical

suspicion of melanoma is a full-thickness biopsy of the lesion, which

allows for adequate histopathologic interpretation and determination

of margins of resection.13 Atypical nevi can often be asymmetric, have

irregular borders, different colors, diameters >6 mm, and evolve over

time, fulfilling clinical diagnostic criteria for suspicion of melanoma.14

Moreover, visual inspection only has a specificity of 59%−78% and

is highly dependent on physician expertise.15 Approximately 15−30
benign lesions are biopsied to diagnose one melanoma.16 Biopsies

result in significant pain, scarring, mental distress, and disfigurement

to the patient. These factors are significantly increased in patients

with numerous atypical nevi or nevus syndromes, such as PPK. Numer-

ous non-invasive imaging technologies have been developed; however,

they lack diagnostic specificity and accuracy to differentiatemelanoma

from benign nevi. The current literature involving PPK includes case

reports and studies on genetics, but none explores the pigmented

lesions within PPK. In this study, we investigated the utility of optical

coherence tomography (OCT) imaging of atypical nevi in a patient with

PPK to confirm non-malignant features with the goal of preventing

unnecessary biopsy.

OCT is an emerging non-invasive imaging technology that generates

cross-sectional images of a tissue in real time.17–20 It uses a near-

infrared low coherence light source21 and has imaging capability of

up to 2 mm in depth and up to 6 mm in width.22 Swept-source OCT

has a high spatial resolution of less than 10 µm, which is 10−100
times finer than clinical high-frequency ultrasound.23 Optical imag-

ing is based on the concept of light as electromagnetic waves with

different wavelengths and intensities. Light wave energy levels have

unique capabilities of interactingwith different tissue components and

microstructures based on their inherent tissue optical properties.24

Light–tissue interaction is due to diffuse scattering, specular scatter-

ing, and absorption of light. Diffuse scattering is caused by incident

photons scattering at different refractive indices due to biological

compartments in the tissue. Specular scattering is due to light being

reflected at the same incident angle compared to normal light. Absorp-

tion of light is caused by biological chromophores and fluorophores

within tissue structures.23–25 Both scattering and absorption of light

affect light reflectance and attenuation. Other methods utilizing light–

tissue interactions have been developed to diagnose skin diseases.

Full-field OCT (FF-OCT) uses wide-field illumination rather than beam

scanning.26 Line-field confocal OCT (LC-OCT) uses a broadband laser

coupled with line detection using a line-scan camera where the focus

is continuously adjusted during the scan to achieve confocal spatial

filtering.27 Reflectance confocal microscopy (RCM) is another method

for high-resolution skin imaging for diagnostic purposes. RCM also

uses confocal illumination to display high-resolution images based on

changes in the refractive index of tissue, but its penetration depth is

limited to approximately 200–250 µm.28

Melanin has a high absorption in both broad spectrum visible light

and near-infrared light bands.29 Based on light–tissue interaction the-

ories, pleomorphic malignant cells are altered biological tissue and

thus will have differences in refractive index and absorptive properties

compared to normal cells. This indicates that OCT should discrimi-

nate benign frommalignant lesions.30–39 However, swept-source OCT

has a specificity of only about 61% when detecting melanoma.40

LC-OCT, with its confocal capabilities, has demonstrated success at

identifying melanocytic lesions with higher accuracy.41 RCM has also

demonstrated adequate sensitivity (93.5%) and specificity (78.8%) for

melanoma diagnosis,42 but the device hasmostly been implemented in

large hospitals and academic and research centers.43 FF-OCT acquires

images en face, and while it has been used to identify different skin
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tumors, it does not appear to have been applied to identification of

melanoma in situ (MIS).44

The goal of this study is to investigate the ability of swept-source

OCT to detect malignancy within pigmented lesions of PPK. This

is done via post-image processing on MATLAB and machine learn-

ing. We apply a computer-based analysis to the OCT image, which

is essential to analyze large quantities of data. This allows for the

illumination of anatomical and functional features of the lesion to a

greater degree than the human eye. The application of the algorithm

to the OCT image extracts quantitative properties of the skin, such

as attenuation coefficient (AC) and textural data, thereby differentiat-

ing unique benign optical properties of pigmented lesions in PPK from

melanoma.

With theadditionof computer-basedanalysis coupledwith this non-

invasive imaging technique and through understanding ACs, we aim

to investigate the utility of OCT confirmation of benign etiology of

pigmented lesions, without the physical, cosmetic, time, and financial

repercussions of a biopsy. With modern technological advances such

as artificial intelligence in skin disease identification, understanding

non-invasivebiomarkeroptical features is necessary to identify charac-

teristics of this disease. Applicationof the results of this studymay then

be used to train a deep learning network and further artificial intel-

ligence applications to identify benign and malignant features of skin

pathologies.

2 MATERIALS AND METHODS

All imaging procedures and experimental protocolswere approved and

carried out based on guidelines of the Institutional Review Board of

University of Illinois atChicagoCollege ofMedicine (IRB#2021-0249).

Informed consent was obtained from all subjects prior to enrollment in

the study.

2.1 Patient population

Benign nevi with morphological atypia were imaged from a 30-year-

old female patient with history significant for PPK. She presented

with a sebaceous nevus on her right lateral neck, which extended

midline anteriorly and chest distally. She had numerous SLN of the

papulosa variant, which presented in a checkerboard pattern involving

both sides of the face, left and predominantly right shoulders, right

upper back, right upper chest, lower back, and right lower extremity.

Within areas of SLN are a significant number of typical and atypi-

cal nevi. Past excised lesions include numerous pigmented lesions

of benign morphology, nevus sebaceous with syringocystadenoma

papilliform, and trichoblastoma. Previous pathology reports dated

from the patient’s birth to the present were analyzed. The patient

had significant history and previous biopsies of pigmented lesions

including compound dysplastic nevi and compound Spitz nevi. She has

numerous similar morphological manifestations of Spitz nevi, which

were described as occasionally pruritic, pink, dome shaped, oval nevi

with central blue–white veil globules. This patient was selected to

be imaged due to her wide variety of nevi of atypical morphology

and type, without history or family history of melanoma or skin

cancer.

For atypical benign nevi in our PPK patient, inclusion criteria for

this study were as follows: pigmented lesions ≥3 mm in width and/or

length, >0 mm in vertical height or raised, textural changes, irregu-

lar borders, atypical color patterns. Pigmented lesions that fulfilled

all of the following categories were included: <3 mm diameter, macu-

lar, symmetrical, and regular borders. Selected PPK-atypical nevi are

likely compound spitz nevi or compound dysplastic nevi and have not

demonstrated changes to the lesion within the last 10 years. An image

was taken with an iPhone XS (Apple Inc.), with a dermoscopy attach-

ment (DermLite DL4N) in a polarized light setting with 90% isopropyl

alcohol as a medium. Examples of selected nevi seen in Figure 5. Sep-

arate sets of nevi were used for training the model and testing the

model. Biopsies were not performed on the nevi from the PPK patient

used for analysis in order to avoid trauma to the PPK patient. This

was appropriate because the patient has been under expert dermato-

logic care for more than 25 years including careful monitoring of all

atypical nevi for changes in appearance that could indicate the pres-

ence of melanoma, and the family has no history of melanoma or skin

cancer.

Patients with melanoma were identified in the clinic. A suspected

pigmented lesion, which fulfilled “ABCDE” requirements of melanoma,

was imaged with OCT prior to full-thickness wide excision. Patients

with histopathologically proven melanoma were included in this study.

Selected patients for this study included a 59-year-old male with MIS

the lower leg, a 43-year-old female with MIS on the leg, a 50-year-old

male with MIS on his lower leg, and a 59-year-old female with superfi-

cial spreading melanoma on the head with Breslow depth 0, 48 mm in

size, with onemitosis.

2.2 OCT configuration

The OCT used in this study was a multi-beam, swept-source system

(Vivosight, Michelson Diagnostic Inc.) with a hand-held probe used for

skin imaging. The light source consisted of a broadband laser with a

central wavelength of 1305 ± 15 nm. The scanning area of the OCT

measured 6 mm in width × 6 mm in length × 2 mm in depth. It had an

axial resolution of 10 µm and a lateral resolution of 7.5 µm. The OCT

image is created by the reflectivity profile or the change in reflectiv-

ity with depth. This reflectivity profile is called the axial scan (A-line

or A-scan). To generate a cross-sectional image, or the B-scan, the

OCT system combines several A-lines for each transverse position of

an incident beam on the biological tissue structure.45 All suspected

melanoma lesions, as well as all PPK nevi were identified and cleaned

with an alcohol prep pad. Next, the OCT probe was applied perpendic-

ular to the skin. A total of 120B-scan en face imageswere collected per

lesion of interest.
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2.3 Computational algorithms

2.3.1 Calculation of attenuation coefficient and
analysis

When light waves penetrate tissue, the intensity decays exponentially

due to light scattering and absorption of the tissue microstructures

under different physiological conditions.46 This attenuation of light

is quantified by the AC and is governed by Beer–Lambert law.47 In

literature, the study of ACs has proven to be successful in character-

izing tissue and structural changes.46,48,49 In this study, a method is

used to calculate ACs by converting each pixel of region of interest

(ROI) of an OCT image and converting it to a corresponding “opti-

cal absorption coefficient pixel.” This method allows for improved

accuracy in detecting data in homogenous and heterogeneous tissue

without pre-segmenting or pre-averaging.24,46 The single scattering

equation implemented is as: I(x) = I0ρe−2µx, where I is the value of

detected intensity, I0 is the incident light intensity, ρ is the backscat-

tering coefficient, µ is AC, and x is the depth. The factor, 2, accounts

for the light traveling to the tissue and back to detector. The cal-

culation of AC is done by fitting an exponential curve to the above

equation, from which a decay constant can be extracted. An ROI

must be selected within a depth range before fitting the curve.47 The

extracted values are then averaged, smoothed, and fitted to a polyno-

mial equation. The resultant slope of the equation yields the AC of the

ROI.24

2.3.2 Image processing for skin surface detection

When imaging skin on OCT, inherent optical properties of tissue

microstructures cause light to be scattered or absorbed. This lack of

light transparency caused by tissue density, as well as noise and light

artifacts, provides challenges when quantitatively analyzing the skin

and when attempting to detect definitive layers of the epidermis and

dermis. As such, typical image enhancement methods such as smooth-

ing and sharpening donot providemuch improvement; therefore,more

sophisticated image processing algorithms with or without contrast

agents or using other imagingmodalities’ input will be utilized.39,50–61

To allow the algorithm to better detect the location of the stratum

corneum of the epidermis on OCT, we translated the OCT image to an

AC map (Figure 1a). The AC map is an image depicting calculated AC

values of light attenuation as light penetrates into the skin through dif-

ferent ROIs. A convolution operationwas used to generate the ACmap

by calculating numerousACkernels onMATLAB.WeusedanACkernel

size of 5 × 5, which was applied to the entire OCT image. The AC map

(Figure 1b) clearly demonstrates greater contrast of the surface of the

skin, allowing us to use a simple high gradient detection algorithm to

find surface layer.

To analyze OCT images for classification, we selected an ROI of

10 pixels in width and 150 pixels in height. A maximum of 78 ROIs

per OCT image of a lesion were analyzed. Some OCT images had less

than 78 ROIs selected due to manual deselection of areas of light

artifact described later. The skin entrance signal correlates to the stra-

tum corneum, which can be visualized as a hyperechoic line across

the OCT image. Because including this bright signal intensity would

positively skew the AC calculation and result in an inaccurate value,

the skin entrance signal was omitted. Hence, we start the AC analy-

sis immediately below the stratum corneum and end in the mid dermis

where the OCT light source penetrates the skin deepest. Skin adnexa

such as hair follicles and hair shafts (Figure 2), as well as light arti-

facts caused by dry skin flakes or dust, prevent light from adequately

entering the skin, creating hypoechoic areas of the image. Because

including these dark areas of the image would inaccurately and nega-

tively skew AC values, these areas were manually deselected prior to

analysis.

2.3.3 Machine learning, Gabor wavelet transform,
and support vector machine

After the AC map was created and each of the ROI segments

was identified and selected (Figure 3), each ROI from both the

melanoma data set and benign nevi data set was fed into our

machine learning algorithm. Segmentation, or the process of group-

ing the image’s data into coherent sub-sections based on features

that were extracted, is a crucial step in inferring knowledge from an

image.62 Segmentation is further divided into two categories: super-

vised and unsupervised.62 Unsupervised segmentation attempts to

find common features between pixels and groups them naturally by

relying on intensity and gradient image analysis.63 This method is

useful when the borders of a tumor are well delineated.62 Because

the borders of our target are not well delineated due to noise

and light artifacts, we use a support vector machine (SVM), which

is a supervised segmentation method.64,65 Supervised segmentation

relies on prior knowledge of the ground truth aided by human input

where groups of pixels are pre-labeled and trained as benign or

malignant.66

For classification tasks, the supervised nature of SVM causes this

algorithm to be highly dependent on feature extraction.67 Thus, the

imagemust be translated into quantifiable numerical and textural data

for computer-based analysis. For our feature extraction, we deter-

mined wavelet transformation to be ideal. Wavelet transformation is

widely used for frequency domain analysis and texture-based feature

analysis of an image.68 Frequency in an image processing is defined as

change and diversity between pixels; for example, contrast between

black and white has a high pixel value diversity and thus a high

frequency.69,70 Wavelet feature analysis allows for the localization of

meaningful signals within an image in time and space and separates

these signals from noise.71 We implement the Gabor wavelet filter,

which is a group of wavelets, with each wavelet encompassing energy

at specific frequency and orientation.68,72 Textural and edge features

can then be constructed from this data set of energy distributions.68,73

The Gabor filter is a Gaussian kernel function governed by a sinusoidal

component.74 The Gabor wavelet transformation formula73 is shown

below, where f is the modulation frequency, and #x and #y represent
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F IGURE 1 Attenuation coefficient (AC) map schematic. (a) Optical coherence tomography (OCT) image of melanoma and (b) ACmap of the
OCT image of themelanoma allows for improved visualization of the stratum corneum of the epidermis. The sizes of the ACmap and original OCT
image (a) are the same, demonstrating that our kernel shifts pixel by pixel.

F IGURE 2 Invalid segments of the image that were omitted prior to attenuation coefficient (AC) analysis andmapping. Yellow bracket:
stratum corneum aka skin entrance signal. Red arrow: hair shaft. Red rectangle: hair follicle.

F IGURE 3 Regions of interest (ROIs) (red rectangle) selected from an optical coherence tomography (OCT) image. Each segment size is 10
pixels in width and 150 pixels in height. All ROIs begin below the stratum corneum (yellow bracket). Yellow bracket: stratum corneum aka skin
entrance signal. Red vertical rectangle: ROI.
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Gaussianmajor andminor widths, respectively:

g (x, y) = 1
2$#x#y e

(− x2

2#2x − y2

2#2y
)+(j2$fx)

(1)

We chose to use SVM because of its capability in creating the widest

plane, or separation, between our two classes of benign andmalignant.

SVM is able tomap points to other dimensions by use of nonlinear rela-

tionships for classificationof data that is not linearly separable.75 Inour

methods, because our data are multidimensional (75 × 75 as opposed

to typical 2D or 3D), we use a radial basis function kernel, where a real-

value function depends on the distance between the input and another

fixed point such as the origin or elsewhere, called a center point.76 This

allows for a multidimensional way to classify data with greater accu-

racy. For example, our OCT AC data are collected in an original space.

SVM is able to map the data in hyperspace, or for example, the sine

(etc.) of OCT ACs. This helps to classify data in a hyperspace, creat-

ing a hyperplane, which is positioned to optimally separate benign and

malignant.75 The main goal of our method is to find the optimal hyper-

plane to classify data in the n-dimension, which corresponds to the

number of features extracted from our data. Our algorithm is detailed

in the flowchart below (Figure 4).

3 RESULTS

3.1 OCT qualitative analysis

Dermoscopy images of examples of selected nevi are visualized in

Figure 5. In OCT B-scan images of normal skin (Figure 6a), clear

delineations of layers of the skin can be visualized. The bright hyper-

reflective line correlates to the stratum corneum and the skin entrance

signal.77 The more hypo-reflective band immediately beneath cor-

relates to the epidermis. The brighter signal intensity following the

epidermis is the dermal–epidermal junction (DEJ), characterized by

hyper-reflective collagen bundles. Immediately underlying the DEJ is

the papillary dermis, which further progresses downward into the

reticular dermis at which point the signal is no longer present. Both the

epidermis and dermis propagate, absorb, and scatter light more than

the stratum corneum.78 Structures such as blood vessels and glands,

which are indicated by hypo-reflective dark lines or tubular structures,

are seen throughout thedermis.Hair follicles are alsovisualizedas indi-

cated by vertical hypo-reflective signals beginning within areas of the

dermis and protruding outward toward the top of the skin.77 Overall

tissue structure and layers of the skin arewell organized and consistent

throughout the image.

In pigmented lesions of PPK OCT (Figure 6b) B-scan images,

changes in skin layers are evident. Areas of atypical nevi with reticu-

lar network patterns visualized on dermoscopy correlate to elongated,

broadened, irregular rete ridges accentuated by dense melanocytic

nests at the tips on OCT.79 Contrasting with melanoma on OCT,

nevi have a well-delineated and preserved DEJ and a consistently

undulating pattern of elongated rete ridges throughout the image.

F IGURE 4 Classification algorithm flowchart.

Rectification of rete ridges, or a flattened epidermis with hypo-

reflective area below, as well as fusion of rete pegs are also observed

(Figure 6b).80

In melanoma OCT (Figure 6c) B-scan images, architectural disar-

ray is seen. Similar to thick atypical nevi, there is a lack of normal

DEJ signal intensity, indicating effacement of the junction. Instead

of linear, well-demarcated sections of epidermis, DEJ, and dermis,

the signal intensities are relatively homogenous throughout. Not only

are melanoma rete ridges no longer as accentuated as benign nevi,

but they are also shorter in length. Rete ridges, although rarely

present in melanoma, display a significantly erratic profile compared

to the consistent undulating pattern in benign nevi. Dense clusters of

melanocytic nests and increased vascularity are seen. Differentiating

features particular to melanoma OCT images are dermal shadows81

(Figure 6c) seen on OCT images of MIS and invasive melanomas and

hyper-reflective vertical icicle-shaped structures reaching the reticular

dermis for invasivemelanomas.79,80
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F IGURE 5 Dermoscopy photos of selected atypical nevi in phacomatosis pigmentokeratotica that may cause clinical suspicion of worrisome
morphological atypia.

3.2 OCT quantitative analysis

3.2.1 Attenuation coefficient calculations

Initially, we attempted an unsupervised segmentation method by

assessing only AC values of four benign nevi and four melanomas. We

selected 20 ROI vertical segments (10 pixels in width × 150 pixels in

depth), and divided each ROI into seven horizontal sections, separating

the individual ROIs into epidermis (depth 1), DEJ (depth 2), superficial

papillary dermis (depth 3), mid-papillary dermis (depths 4 and 5), deep

papillary dermis (depth 6), and superficial reticular dermis (depth 7)

layers. Melanoma demonstrated lower AC values compared to benign

nevi of PPK, especially at depths 1 (Figure 6), 3, and 7. For depths 2, 3,

5, and 6, 50% of the time, melanoma had higher AC values compared

to benign nevi of PPK. In total, 18 out of 28 depth profiles (64.0%)

of melanoma studied had lower AC values. For eight out of 28 depth

profiles (28.0%), melanoma displayed higher AC values. For two out

of 28 depth profiles (0.07%), PPK-benign nevi ACs were comparable

to melanoma. However, we found that these results had limited appli-

cability and needed a wider scale, which initiated the use of our SVM

supervised algorithm.

3.2.2 Machine learning algorithm

A total of 86 OCT images were used to train and test the SVM model

and algorithm. For the training phase, 74 OCT images were used (37

pigmented lesions in PPK and 37 melanoma). For the testing phase,

12 OCT images were used (six pigmented lesions in PPK and six

melanoma). EachROI (10 pixels inwidth×150pixels in depth) perOCT

imagewas fed into the SVMfeature extraction algorithm for image seg-

mentation. A total of 9271ROIswere extracted for the training set and

1809 ROIs were extracted for the testing set. During the test phase, a

whole OCT image of either pigmented lesion in PPK or melanoma was

used. The “Predicted ClassWinner” indicates the class chosenwith the

highest probability based on ROI classification. Based on our results

(Table 1), our algorithm was able to correctly classify whether or not

theOCT imagewas truly benign or melanoma.

For our binary classification, two classes were assigned: benign or

melanoma. The confusion matrix (Table 2) represents our model’s per-

formance in identifying benign optical features in pigmented lesions

in PPK. To evaluate the performance of the method, true positive

(TP), true negative (TN), false positive (FP), and false negative (FN)

values were calculated. TP indicates the number of lesions cor-

rectly classified. TN indicates the number of lesions that have been

truly rejected. FP indicates the number of lesions that were incor-

rectly detected. FN indicates the number of lesions that were falsely

rejected.

From the confusion matrix, precision and recall values were calcu-

lated from TP, TN, FP, and FN calculations. Precision quantifies the

number of predicted positive classifications that truly belong to a pos-

itive class, also described as the reliability of the model. Precision

reflects the ratio of the truly classified positive sample set to total num-

ber of positively classified samples. The precision formula is shown

below:

Precision = True positive
True positive + False negative

(2)

Recall quantifies the number of predicted positive classificationsmade

from the total number of positive examples from our set of data,
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F IGURE 6 Optical coherence tomography (OCT) image comparisons of normal skin (a), nevus (b), andmelanoma (c). (a) OCT image of normal
skin. Neatly arranged skin layer architecture is observed. Yellow bracket: stratum corneum aka skin entrance signal. Orange line: epidermis. Green
line: dermis with bright collagen fibers. Red dashed ovals: blood vessels. (b) OCT image of nevus. Blue arrows: elongated rete ridges. Pink dashed
line: rete ridge fusion. Yellow bracket: stratum corneum aka skin entrance signal. Orange line: epidermis. Green line: dermis. (c) OCT image of
melanoma in situ. Overall architectural disarray is notable, indicated by loss of a well-delineated epidermis, dermis, and dermal–epidermal junction
(DEJ). Dermal shadows (white arrows) are characteristic of melanoma onOCT.White arrows: vertical dermal shadows. Yellow bracket: stratum
corneum aka skin entrance signal. Orange line: epidermis. Green line: dermis.

also described as the ability of the model to classify positive sam-

ples.However, if the model detects all of the positive samples, recall

will be 100% even if all negative samples were classified as positive,

incorrectly. The recall formula is shown below:

Recall = True positive
True positive + False positive

(3)

Finally, the F1 score, which combines precision and recall, is calculated.

The calculation for the F1 score is demonstrated in the formula below:

F1 = Precision × Recall
Precision + Recall

(4)

For the testingphase inour SVMmodel for benign lesions, theprecision

calculation was 79%, with recall of 82% and F1 score of 81%. For the

testing phase for melanoma lesions, the precision calculationwas 81%,

with recall of 78%andF1 scoreof 80%. Thedata are representedbelow

(Table 3).

4 DISCUSSION

PPK is a rare epidermal nevus syndrome characterized by the coexis-

tence of nevus sebaceous and SLNwith additional extracutaneous syn-

dromic features that involve multiple organ systems.2,82 Melanocytic

proliferations within SLNmay consist of many types of nevi which may

include dysplastic, Spitz, and compound, oftentimes with generalized

atypia. Such worrisome features may prompt clinicians to excise these

lesions for suspicion of malignancy. However, for patients with PPK,
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TABLE 1 Test case results for benign versus melanoma classification using support vector machine and Gabor transformwavelet feature.

Case number True class
Number of roi
per image

Number of
predicted roi
as benign

Number of
predicted roi
asmelanoma

Predicted class
winner

Case 1 Melanoma 150 33 117 Melanoma

Case 2 Melanoma 150 33 117 Melanoma

Case 3 Melanoma 147 32 115 Melanoma

Case 4 Melanoma 150 30 120 Melanoma

Case 5 Melanoma 150 40 110 Melanoma

Case 6 Melanoma 150 25 125 Melanoma

Case 7 Benign 152 103 49 Benign

Case 8 Benign 152 106 46 Benign

Case 9 Benign 152 127 25 Benign

Case 10 Benign 152 132 20 Benign

Case 11 Benign 152 137 15 Benign

Case 12 Benign 152 141 11 Benign

Abbreviation: ROI, region of interest.

TABLE 2 Confusionmatrix of our binary classificationmodel.

Predicted

Ground truth Positive Negative

Positive 746 166

Negative 193 704

Note: True positive: 746, true negative: 704, false positive: 193, and false
negative: 166.

TABLE 3 Precision, recall, and F1 score for benign andmelanoma
classification using support vector machine and Gabor transform
wavelet features.

Precision Recall F1 score

Benign 79% 82% 81%

Melanoma 81% 78% 80%

biopsy of a large number of these melanocytic lesions may not be

physically feasible, posing a challenge during evaluation. In a retro-

spective study analyzing biopsy rates of 18485biopsies ofmelanocytic

proliferations, only 8.6% of them were diagnosed melanoma-in-situ or

invasive melanoma.83 Consequently, non-invasive imaging and other

technologies have been developed in an attempt to decrease biopsy

numbers; however, biopsies remain the gold standard. According to

a Cochrane analysis, swept-source OCT currently has a specificity of

61% in the discrimination of melanoma from nevi40 and additional

studies have been able to increase the specificity to 80%.31 The

aim of our study was to investigate if a post-OCT imaging algorithm

could confirm benign features of pigmented lesions in a patient

with PPK, without necessitating invasive biopsy procedures. We

have demonstrated that by implementing SVM, a high-performance

machine learning method, and Gabor wavelet transformation feature

extraction, we have been able to confirm that the selected pigmented

lesions imaged in PPK were benign. Furthermore, by implementing

a backscattering equation followed by the calculation of ACs, we

observed intrinsic differences in values between nevi in PPK when

comparing them tomelanoma.

Machine learning research in the scope of melanoma and nevi

differentiation has previously been applied to dermoscopic and non-

dermoscopic gross images of the lesion with pixel-by-pixel analysis.84

SVM with Gabor wavelet transformation applications to melanoma

versus nevi has been reported, but with analysis of histopathologic

slide and dermoscopic images.85,86 We are the first and only study thus

far to apply SVM learning in conjunction with Gabor wavelet transfor-

mation to swept-source OCT imaging of melanoma and benign nevi.

Based on our training and testing set, we conclude that our algorithm

was successfully able to predict benign diagnosis.Our results indicate a

potential increased applicability of thesemethods to studies of a larger

sample size.

Tissues have intrinsic optical properties that allow for the detec-

tion of changes in light scattering, absorption, and attenuation, which

affect AC.87 By implementing the study of AC in our algorithm, we

are able to discern why benign features can be discriminated from

malignancy in OCT. Lower ACs indicate tissue features that are more

absorbent and more transparent to light, and higher ACs indicate fea-

tures that reflect or are more opaque to light.87 This is based on

microstructure size, density, and shape, chromophore concentration,

and cellularity order and disorder. During tumorigenesis, these opti-

cal properties change due to neoplastic disarray of normal cellular

structure, allowing OCT to visualize these changes. OCT is sensitive

in detecting the presence of neoplasm. However, specificity is low due

to interrelated optical characteristics of tissue characteristics.31,88 In

this study, our methods of post-image processing and analysis are able

to identify and classify discrete patterns within OCT imaging, yield-

ing F1 test scores of 81% and 80% for benign nevi and melanoma,

respectively.
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The microarchitecture of benign nevi is vastly different from

melanoma, which contributes to the differences in AC values. Nevi

may have higher AC values than melanoma due to less architec-

tural effacement. Notably, epidermal hyperplasia, commonly seen in

benign lesions, may contribute to higher AC values.89 Compound nevi

are characterized by compact hyperkeratosis, orthokeratosis, and

hypergranulosis.90,91 Keratin in the epidermis exhibits bright light

scattering, which decreases the absorption of light, thus increasing AC,

as demonstrated in our results.92 Additionally, in Spitz nevi lesions,

presence of Kamino bodies in the epidermis may cause an increase

in AC values in pigmented lesions in PPK. Kamino bodies, which are

absent in melanomas, are hyaline structures that trichrome stain

similarly to collagen.93

Features that indicate malignancy, as seen in melanoma, include

larger amounts of cytoplasm within melanocytes. Cytoplasm poorly

scatters light, which causes a reduction in AC values compared to

nevi.94 Melanoma epidermal ACs are 10 times lower than those

of normal skin, indicating that the epidermis is more translucent

compared to nevi. As such, light scattering is dependent on refrac-

tive index mismatch as the incident light beam moves through

altered architecture.81,95 Organelles within cells, such as the nucleus,

also determine light scattering capabilities.96 Features that define

melanoma include larger nuclear to cytoplasmic ratio, nuclear hyper-

chromasia, mitotic activity, and pleomorphism.60,97 Inmelanoma, large

nuclei with greater DNA content indicate rapid division of tumor

cells, which display higher light scattering consistent with increased

interception of light with increased smaller structures.94

Melanocytic maturation or lack thereof define benign nevi and

melanoma, respectively. In benign nevi, melanocyte maturation is

present, indicated by proliferative melanocytic nests beginning at the

epidermis, trickling down to single file melanocytes toward the dermis.

A lack ofmelanocytematuritywith clumpsof disorganizedmelanocytic

nests toward the dermis is a defining feature of melanoma.98,99 These

subtle differencesmay be observed in depth profiles where pigmented

lesions ACs in PPK are higher than melanoma ACs. Because nevi

have singular melanocytes entering the dermis, areas surrounding

these dermal melanocytes may consist of lamellar and/or concen-

tric dermal fibrosis, as demonstrated in compound dysplastic nevi.100

Compared to normal skin, smaller AC standard deviations may be

observed in melanoma and atypical nevi due to greater tissue homo-

geneity inmelanocyte content. For example, as the incident light enters

melanoma or atypical nevi, it will encounter a maturation axis of con-

sistent melanocytes. In contrast, in normal skin, layers of the skin are

neatly organized with microstructures such as hair follicles, blood ves-

sels, and sweat glands interweaved in their respective layers. As the

light encounters different layers and different microstructures, sig-

nal intensities are observed on OCT, contributing to a wider range

of AC values across each depth. Additionally, normal skin is sharply

defined by the DEJ, which is characterized by collagen fibrils. Both

melanoma and nevi lack a similar DEJ intensity, indicating the lack of

organized band of collagen density and architectural disarray.101 All

of these factors allow for meaningful pattern recognition by our SVM

algorithm.

Swept-source OCT allows for higher scan rate and less motion

artifacts, allowing for improved image contrast.101,102 However, lim-

itations include light signal intensity decay, artifacts such as blood

vessels, speckle noise produced in theOCT image, tissue orOCT probe

motion, and blurring, all of which could affect pixel value and thus AC

calculations.101 Bright signal intensities, such as high melanin pigment

content, could reflect the light signal, thereby obstructing further light

penetration to regions below. While resolution of OCT has not been

able to display morphology of single cells, clear architectural changes

can be seen.With implementation of post-image processing by analyz-

ing optical properties and AC values of melanoma, PPK-atypical nevi,

and normal skin, we can further characterize tissue features without

biopsy. Often, however, to accurately diagnose dysplastic or Spitz nevi

frommelanoma, discrete and subtle histological findings must be seen.

Machine learning applications have limitations as well. Because

machine learning is highly dependent on the data it is given, the quality

of images must be clear and accurate. Poor-quality images may cause

machine learning to draw inaccurate conclusions and thus must be

properly vetted.103 Additionally, machine learning does not take into

consideration the effect of other physiological or pathological etiolo-

gies that might affect the presentation. Thus, machine learning and

artificial intelligence in the scope of dermatologic applications should

be used in combination with a physician’s clinical interpretation to

ensure a comprehensive diagnostic approach to melanocytic lesion

management. In our study specifically, due to many options of feature

extraction and selection methods, fine-tuning these combinations may

continue to optimize ourmethod’s specificity score.

5 CONCLUSION

Swept-source OCT has been demonstrated to be a promising tech-

nological advancement in a step toward potentially decreasing biopsy

numbers. While OCT lacks the ability to discriminate detail at the cel-

lular level, the addition of post-image processing and analysis by SVM

machine learning, Gabor wavelet transformation, and AC has demon-

strated the ability to confirm benign features in pigmented lesions in a

patient with PPK. Studies with larger sample sizes must be explored to

further investigate the utility of this non-invasive post-image analytical

approach to pigmented lesions.
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