Received: 13 March 2023

W) Check for updates

Accepted: 19 May 2023

DOI: 10.1111/5rt.13377

ORIGINAL ARTICLE

WILEY

Optical coherence tomography confirms non-malignant
pigmented lesions in phacomatosis pigmentokeratotica using a
support vector machine learning algorithm

JennalLee! |
Maria Tsoukas® |

1Department of Dermatology, University of
Illinois-Chicago, Chicago, Illinois, USA

2Center for Cognitive Science, Institute for
Convergence Science and Technology (ICST),
Sharif University of Technology, Tehran,
Islamic Republic of Iran

3Department of Computer Engineering,
Shahid Rajaee Teacher Training University,
Tehran, Islamic Republic of Iran

4School of Cognitive Sciences, Institute for
Research in Fundamental Sciences (IPM),
Tehran, Islamic Republic of Iran

>Department of Biomedical Engineering,
University of lllinois-Chicago, Chicago, lllinois,
USA

Correspondence
Kamran Avanaki, Department of Dermatology,

University of lllinois-Chicago, Chicago, IL, USA.

Email: avanaki@uic.edu

Funding information
Melanoma Research Alliance, Grant/Award
Number: 624320

Mohammad Javad Beirami? |

Reza Ebrahimpour?®4 | Carolina Puyana® |

Kamran Avanaki®>

Abstract

Introduction: Phacomatosis pigmentokeratotica (PPK), an epidermal nevus syndrome,
is characterized by the coexistence of nevus spilus and nevus sebaceus. Within the
nevus spilus, an extensive range of atypical nevi of different morphologies may mani-
fest. Pigmented lesions may fulfill the ABCDE criteria for melanoma, which may prompt
a physician to perform a full-thickness biopsy.

Motivation: Excisions result in pain, mental distress, and physical disfigurement. For
patients with a significant number of nevi with morphologic atypia, it may not be physi-
cally feasible to biopsy a large number of lesions. Optical coherence tomography (OCT)
is a non-invasive imaging modality that may be used to visualize non-melanoma and
melanoma skin cancers.

Materials and Method: In this study, we used OCT to image pigmented lesions with
morphologic atypia in a patient with PPK and assessed their quantitative optical prop-
erties compared to OCT cases of melanoma. We implement a support vector machine
learning algorithm with Gabor wavelet transformation algorithm during post-image
processing to extract optical properties and calculate attenuation coefficients.
Results: The algorithm was trained and tested to extract and classify textural data.
Conclusion: We conclude that implementing this post-imaging machine learning algo-
rithm to OCT images of pigmented lesions in PPK has been able to successfully confirm
benign optical properties. Additionally, we identified remarkable differences in atten-
uation coefficient values and tissue optical characteristics, further defining separating

benign features of pigmented lesions in PPK from malignant features.
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1 | INTRODUCTION

Phacomatosis pigmentokeratotica (PPK) is a distinct and rare type
of epidermal nevus syndrome characterized by coexisting speckled
lentiginous nevus (SLN) of the papular type and nonepidermolytic
organoid sebaceous nevus.! Patients with PPK also present with extra-
cutaneous symptoms, which may include neurological, musculoskele-
tal, and ocular disorders, commonly correlating to the limbs affected
cutaneously.l3 A systematic search retrieved 95 cases reported in
literature.* PPK is hypothesized to be due to a single dominant het-
erozygous activating HRAS ¢.37G>A mutation, which causes the two
different types of nevi. The mutation affects a multi-potent progenitor
cells, which then gives rise to cutaneous and extracutaneous mani-
festations seen in PPK. Sebaceous nevus, otherwise known as nevus
sebaceous of Jadassohn, is a congenital malformation that involves
hamartomas of the pilosebaceous follicular unit. The coexisting SLN,
otherwise known as nevus spilus, is described as larger café-au-lait
macules with numerous nevi or smaller superimposed darker black
or brown melanocytic proliferations.” Sizes of the nevi may range
from a millimeter up to 10 cm.2>¢ Spitz nevi may also be found
within speckled lentiginous nevi of PPK patients.” 1% Within regions
of the SLN, secondary cutaneous manifestations are rare; however,
cases of malignant melanoma have been reported.>1! Atypical nevi,
otherwise known as dysplastic nevi, are melanocytic neoplasms with
clinical features that may simulate melanoma (topographical asym-
metry, color variegation, large diameter [>6 mm]).12 Patients with
PPK may have atypical nevi that may be difficult to discriminate
from melanoma due to morphologic atypia. Often times, patients with
PPK or other nevus syndromes are subject to a significant number
of biopsies. Patients with PPK may have a high propensity of devel-
oping nevi with atypia, which can fulfill the “ABCDE” criteria for
melanoma.

PPKis a clinical diagnosis involving the identification of characteris-
tic symptoms of an epidermal nevus syndrome, comprehensive patient
history, and thorough physical examination.? Additional testing, such
as full skeletal, should be performed. Routine central nervous system
(CNS) examinations are not standard unless the patient presents with
developmental concerns, CNS symptoms, or if the epidermal nevus
is largely present within the craniofacial distribution.? Treatment of
PPK is primarily reserved for extracutaneous involvement, such as
limb length discrepancy, seizures, or ocular manifestations, while sur-
gical excision may be used to address symptomatic nevi and nevi with
clinically worrisome morphologic atypia.

Generally, for melanocytic lesions, the gold standard for a clinical
suspicion of melanoma is a full-thickness biopsy of the lesion, which
allows for adequate histopathologic interpretation and determination
of margins of resection.'® Atypical nevi can often be asymmetric, have
irregular borders, different colors, diameters >6 mm, and evolve over
time, fulfilling clinical diagnostic criteria for suspicion of melanoma.'*
Moreover, visual inspection only has a specificity of 59%—78% and
is highly dependent on physician expertise.'> Approximately 15—30

benign lesions are biopsied to diagnose one melanoma.'® Biopsies

result in significant pain, scarring, mental distress, and disfigurement
to the patient. These factors are significantly increased in patients
with numerous atypical nevi or nevus syndromes, such as PPK. Numer-
ous non-invasive imaging technologies have been developed; however,
they lack diagnostic specificity and accuracy to differentiate melanoma
from benign nevi. The current literature involving PPK includes case
reports and studies on genetics, but none explores the pigmented
lesions within PPK. In this study, we investigated the utility of optical
coherence tomography (OCT) imaging of atypical nevi in a patient with
PPK to confirm non-malignant features with the goal of preventing
unnecessary biopsy.

OCT is an emerging non-invasive imaging technology that generates
cross-sectional images of a tissue in real time.l”~2° |t uses a near-
infrared low coherence light source?! and has imaging capability of
up to 2 mm in depth and up to 6 mm in width.2?2 Swept-source OCT
has a high spatial resolution of less than 10 um, which is 10—100
times finer than clinical high-frequency ultrasound.?®> Optical imag-
ing is based on the concept of light as electromagnetic waves with
different wavelengths and intensities. Light wave energy levels have
unique capabilities of interacting with different tissue components and
microstructures based on their inherent tissue optical properties.2
Light-tissue interaction is due to diffuse scattering, specular scatter-
ing, and absorption of light. Diffuse scattering is caused by incident
photons scattering at different refractive indices due to biological
compartments in the tissue. Specular scattering is due to light being
reflected at the same incident angle compared to normal light. Absorp-
tion of light is caused by biological chromophores and fluorophores
within tissue structures.23-2> Both scattering and absorption of light
affect light reflectance and attenuation. Other methods utilizing light-
tissue interactions have been developed to diagnose skin diseases.
Full-field OCT (FF-OCT) uses wide-field illumination rather than beam
scanning.2® Line-field confocal OCT (LC-OCT) uses a broadband laser
coupled with line detection using a line-scan camera where the focus
is continuously adjusted during the scan to achieve confocal spatial
filtering.2” Reflectance confocal microscopy (RCM) is another method
for high-resolution skin imaging for diagnostic purposes. RCM also
uses confocal illumination to display high-resolution images based on
changes in the refractive index of tissue, but its penetration depth is
limited to approximately 200-250 um.28

Melanin has a high absorption in both broad spectrum visible light
and near-infrared light bands.2? Based on light-tissue interaction the-
ories, pleomorphic malignant cells are altered biological tissue and
thus will have differences in refractive index and absorptive properties
compared to normal cells. This indicates that OCT should discrimi-
nate benign from malignant lesions.39-3? However, swept-source OCT
has a specificity of only about 61% when detecting melanoma.*°
LC-OCT, with its confocal capabilities, has demonstrated success at
identifying melanocytic lesions with higher accuracy.** RCM has also
demonstrated adequate sensitivity (93.5%) and specificity (78.8%) for
melanoma diagnosis,*? but the device has mostly been implemented in
large hospitals and academic and research centers.*® FF-OCT acquires

images en face, and while it has been used to identify different skin
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tumors, it does not appear to have been applied to identification of
melanoma in situ (MIS).44

The goal of this study is to investigate the ability of swept-source
OCT to detect malignancy within pigmented lesions of PPK. This
is done via post-image processing on MATLAB and machine learn-
ing. We apply a computer-based analysis to the OCT image, which
is essential to analyze large quantities of data. This allows for the
illumination of anatomical and functional features of the lesion to a
greater degree than the human eye. The application of the algorithm
to the OCT image extracts quantitative properties of the skin, such
as attenuation coefficient (AC) and textural data, thereby differentiat-
ing unique benign optical properties of pigmented lesions in PPK from
melanoma.

With the addition of computer-based analysis coupled with this non-
invasive imaging technique and through understanding ACs, we aim
to investigate the utility of OCT confirmation of benign etiology of
pigmented lesions, without the physical, cosmetic, time, and financial
repercussions of a biopsy. With modern technological advances such
as artificial intelligence in skin disease identification, understanding
non-invasive biomarker optical features is necessary to identify charac-
teristics of this disease. Application of the results of this study may then
be used to train a deep learning network and further artificial intel-
ligence applications to identify benign and malignant features of skin

pathologies.

2 | MATERIALS AND METHODS

Allimaging procedures and experimental protocols were approved and
carried out based on guidelines of the Institutional Review Board of
University of Illinois at Chicago College of Medicine (IRB #2021-0249).
Informed consent was obtained from all subjects prior to enrollment in
the study.

2.1 | Patient population

Benign nevi with morphological atypia were imaged from a 30-year-
old female patient with history significant for PPK. She presented
with a sebaceous nevus on her right lateral neck, which extended
midline anteriorly and chest distally. She had numerous SLN of the
papulosa variant, which presented in a checkerboard pattern involving
both sides of the face, left and predominantly right shoulders, right
upper back, right upper chest, lower back, and right lower extremity.
Within areas of SLN are a significant number of typical and atypi-
cal nevi. Past excised lesions include numerous pigmented lesions
of benign morphology, nevus sebaceous with syringocystadenoma
papilliform, and trichoblastoma. Previous pathology reports dated
from the patient’s birth to the present were analyzed. The patient
had significant history and previous biopsies of pigmented lesions
including compound dysplastic nevi and compound Spitz nevi. She has

numerous similar morphological manifestations of Spitz nevi, which

were described as occasionally pruritic, pink, dome shaped, oval nevi
with central blue-white veil globules. This patient was selected to
be imaged due to her wide variety of nevi of atypical morphology
and type, without history or family history of melanoma or skin
cancer.

For atypical benign nevi in our PPK patient, inclusion criteria for
this study were as follows: pigmented lesions >3 mm in width and/or
length, >0 mm in vertical height or raised, textural changes, irregu-
lar borders, atypical color patterns. Pigmented lesions that fulfilled
all of the following categories were included: <3 mm diameter, macu-
lar, symmetrical, and regular borders. Selected PPK-atypical nevi are
likely compound spitz nevi or compound dysplastic nevi and have not
demonstrated changes to the lesion within the last 10 years. An image
was taken with an iPhone XS (Apple Inc.), with a dermoscopy attach-
ment (DermLite DL4N) in a polarized light setting with 90% isopropyl
alcohol as a medium. Examples of selected nevi seen in Figure 5. Sep-
arate sets of nevi were used for training the model and testing the
model. Biopsies were not performed on the nevi from the PPK patient
used for analysis in order to avoid trauma to the PPK patient. This
was appropriate because the patient has been under expert dermato-
logic care for more than 25 years including careful monitoring of all
atypical nevi for changes in appearance that could indicate the pres-
ence of melanoma, and the family has no history of melanoma or skin
cancer.

Patients with melanoma were identified in the clinic. A suspected
pigmented lesion, which fulfilled “ABCDE” requirements of melanoma,
was imaged with OCT prior to full-thickness wide excision. Patients
with histopathologically proven melanoma were included in this study.
Selected patients for this study included a 59-year-old male with MIS
the lower leg, a 43-year-old female with MIS on the leg, a 50-year-old
male with MIS on his lower leg, and a 59-year-old female with superfi-
cial spreading melanoma on the head with Breslow depth O, 48 mm in

size, with one mitosis.

2.2 | OCT configuration

The OCT used in this study was a multi-beam, swept-source system
(Vivosight, Michelson Diagnostic Inc.) with a hand-held probe used for
skin imaging. The light source consisted of a broadband laser with a
central wavelength of 1305 + 15 nm. The scanning area of the OCT
measured 6 mm in width X 6 mm in length x 2 mm in depth. It had an
axial resolution of 10 um and a lateral resolution of 7.5 um. The OCT
image is created by the reflectivity profile or the change in reflectiv-
ity with depth. This reflectivity profile is called the axial scan (A-line
or A-scan). To generate a cross-sectional image, or the B-scan, the
OCT system combines several A-lines for each transverse position of
an incident beam on the biological tissue structure.*> All suspected
melanoma lesions, as well as all PPK nevi were identified and cleaned
with an alcohol prep pad. Next, the OCT probe was applied perpendic-
ular to the skin. A total of 120 B-scan en face images were collected per

lesion of interest.
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2.3 | Computational algorithms

2.3.1 | Calculation of attenuation coefficient and
analysis

When light waves penetrate tissue, the intensity decays exponentially
due to light scattering and absorption of the tissue microstructures
under different physiological conditions.*® This attenuation of light
is quantified by the AC and is governed by Beer-Lambert law.*’ In
literature, the study of ACs has proven to be successful in character-
izing tissue and structural changes.*¢#84? |n this study, a method is
used to calculate ACs by converting each pixel of region of interest
(ROI) of an OCT image and converting it to a corresponding “opti-
cal absorption coefficient pixel.” This method allows for improved
accuracy in detecting data in homogenous and heterogeneous tissue
without pre-segmenting or pre-averaging.2*4¢ The single scattering
equation implemented is as: I(x) = lppe~2#*, where [ is the value of
detected intensity, Iy is the incident light intensity, p is the backscat-
tering coefficient, u is AC, and x is the depth. The factor, 2, accounts
for the light traveling to the tissue and back to detector. The cal-
culation of AC is done by fitting an exponential curve to the above
equation, from which a decay constant can be extracted. An ROI
must be selected within a depth range before fitting the curve.*” The
extracted values are then averaged, smoothed, and fitted to a polyno-
mial equation. The resultant slope of the equation yields the AC of the
ROI.Z4

2.3.2 | Image processing for skin surface detection

When imaging skin on OCT, inherent optical properties of tissue
microstructures cause light to be scattered or absorbed. This lack of
light transparency caused by tissue density, as well as noise and light
artifacts, provides challenges when quantitatively analyzing the skin
and when attempting to detect definitive layers of the epidermis and
dermis. As such, typical image enhancement methods such as smooth-
ing and sharpening do not provide much improvement; therefore, more
sophisticated image processing algorithms with or without contrast
agents or using other imaging modalities’ input will be utilized.3%:50-61

To allow the algorithm to better detect the location of the stratum
corneum of the epidermis on OCT, we translated the OCT image to an
AC map (Figure 1a). The AC map is an image depicting calculated AC
values of light attenuation as light penetrates into the skin through dif-
ferent ROls. A convolution operation was used to generate the AC map
by calculating numerous AC kernels on MATLAB. We used an AC kernel
size of 5 x 5, which was applied to the entire OCT image. The AC map
(Figure 1b) clearly demonstrates greater contrast of the surface of the
skin, allowing us to use a simple high gradient detection algorithm to
find surface layer.

To analyze OCT images for classification, we selected an ROI of
10 pixels in width and 150 pixels in height. A maximum of 78 ROIs
per OCT image of a lesion were analyzed. Some OCT images had less

than 78 ROls selected due to manual deselection of areas of light

artifact described later. The skin entrance signal correlates to the stra-
tum corneum, which can be visualized as a hyperechoic line across
the OCT image. Because including this bright signal intensity would
positively skew the AC calculation and result in an inaccurate value,
the skin entrance signal was omitted. Hence, we start the AC analy-
sis immediately below the stratum corneum and end in the mid dermis
where the OCT light source penetrates the skin deepest. Skin adnexa
such as hair follicles and hair shafts (Figure 2), as well as light arti-
facts caused by dry skin flakes or dust, prevent light from adequately
entering the skin, creating hypoechoic areas of the image. Because
including these dark areas of the image would inaccurately and nega-
tively skew AC values, these areas were manually deselected prior to

analysis.

2.3.3 | Machine learning, Gabor wavelet transform,
and support vector machine

After the AC map was created and each of the ROl segments
was identified and selected (Figure 3), each ROl from both the
melanoma data set and benign nevi data set was fed into our
machine learning algorithm. Segmentation, or the process of group-
ing the image’s data into coherent sub-sections based on features
that were extracted, is a crucial step in inferring knowledge from an
image.®? Segmentation is further divided into two categories: super-
vised and unsupervised.®? Unsupervised segmentation attempts to
find common features between pixels and groups them naturally by
relying on intensity and gradient image analysis.®® This method is
useful when the borders of a tumor are well delineated.®> Because
the borders of our target are not well delineated due to noise
and light artifacts, we use a support vector machine (SVM), which
is a supervised segmentation method.®#%> Supervised segmentation
relies on prior knowledge of the ground truth aided by human input
where groups of pixels are pre-labeled and trained as benign or
malignant.®®

For classification tasks, the supervised nature of SVM causes this
algorithm to be highly dependent on feature extraction.®’ Thus, the
image must be translated into quantifiable numerical and textural data
for computer-based analysis. For our feature extraction, we deter-
mined wavelet transformation to be ideal. Wavelet transformation is
widely used for frequency domain analysis and texture-based feature
analysis of an image.®® Frequency in an image processing is defined as
change and diversity between pixels; for example, contrast between
black and white has a high pixel value diversity and thus a high
frequency.®?’% Wavelet feature analysis allows for the localization of
meaningful signals within an image in time and space and separates
these signals from noise.”! We implement the Gabor wavelet filter,
which is a group of wavelets, with each wavelet encompassing energy
at specific frequency and orientation.®®”2 Textural and edge features
can then be constructed from this data set of energy distributions.®%73
The Gabor filter is a Gaussian kernel function governed by a sinusoidal
component.”4 The Gabor wavelet transformation formula’® is shown

below, where f is the modulation frequency, and o, and o, represent
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FIGURE 1 Attenuation coefficient (AC) map schematic. (a) Optical coherence tomography (OCT) image of melanoma and (b) AC map of the
OCT image of the melanoma allows for improved visualization of the stratum corneum of the epidermis. The sizes of the AC map and original OCT
image (a) are the same, demonstrating that our kernel shifts pixel by pixel.

FIGURE 2 Invalid segments of the image that were omitted prior to attenuation coefficient (AC) analysis and mapping. Yellow bracket:
stratum corneum aka skin entrance signal. Red arrow: hair shaft. Red rectangle: hair follicle.

FIGURE 3 Regions of interest (ROIs) (red rectangle) selected from an optical coherence tomography (OCT) image. Each segment size is 10
pixels in width and 150 pixels in height. All ROIs begin below the stratum corneum (yellow bracket). Yellow bracket: stratum corneum aka skin
entrance signal. Red vertical rectangle: ROI.
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Gaussian major and minor widths, respectively:
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We chose to use SVM because of its capability in creating the widest
plane, or separation, between our two classes of benign and malignant.
SVM s able to map points to other dimensions by use of nonlinear rela-
tionships for classification of data that is not linearly separable.”® In our
methods, because our data are multidimensional (75 x 75 as opposed
to typical 2D or 3D), we use a radial basis function kernel, where a real-
value function depends on the distance between the input and another
fixed point such as the origin or elsewhere, called a center point.”® This
allows for a multidimensional way to classify data with greater accu-
racy. For example, our OCT AC data are collected in an original space.
SVM is able to map the data in hyperspace, or for example, the sine
(etc.) of OCT ACs. This helps to classify data in a hyperspace, creat-
ing a hyperplane, which is positioned to optimally separate benign and
malignant.”® The main goal of our method is to find the optimal hyper-
plane to classify data in the n-dimension, which corresponds to the
number of features extracted from our data. Our algorithm is detailed

in the flowchart below (Figure 4).

3 | RESULTS
3.1 | OCT qualitative analysis

Dermoscopy images of examples of selected nevi are visualized in
Figure 5. In OCT B-scan images of normal skin (Figure 6a), clear
delineations of layers of the skin can be visualized. The bright hyper-
reflective line correlates to the stratum corneum and the skin entrance
signal.”” The more hypo-reflective band immediately beneath cor-
relates to the epidermis. The brighter signal intensity following the
epidermis is the dermal-epidermal junction (DEJ), characterized by
hyper-reflective collagen bundles. Immediately underlying the DEJ is
the papillary dermis, which further progresses downward into the
reticular dermis at which point the signal is no longer present. Both the
epidermis and dermis propagate, absorb, and scatter light more than
the stratum corneum.’® Structures such as blood vessels and glands,
which are indicated by hypo-reflective dark lines or tubular structures,
are seen throughout the dermis. Hair follicles are also visualized as indi-
cated by vertical hypo-reflective signals beginning within areas of the
dermis and protruding outward toward the top of the skin.”” Overall
tissue structure and layers of the skin are well organized and consistent
throughout the image.

In pigmented lesions of PPK OCT (Figure 6b) B-scan images,
changes in skin layers are evident. Areas of atypical nevi with reticu-
lar network patterns visualized on dermoscopy correlate to elongated,
broadened, irregular rete ridges accentuated by dense melanocytic
nests at the tips on OCT.”? Contrasting with melanoma on OCT,
nevi have a well-delineated and preserved DEJ and a consistently

undulating pattern of elongated rete ridges throughout the image.

OCT image

Extracting attenuation
coefficient map

v

Edge detection

v

ROI selection by using our
edge detection indices over
original image

v

Splitting dataset to
train & test " Tost

r Train | !

Data normalization Data normalization
and labeling and labeling

v v

Feature extraction Feature extraction
using Gabor wavelet using Gabor wavelet

v

Training SVM model

-

Benign

SVM model

FIGURE 4 Classification algorithm flowchart.

Rectification of rete ridges, or a flattened epidermis with hypo-
reflective area below, as well as fusion of rete pegs are also observed
(Figure 6b).89

In melanoma OCT (Figure 6c) B-scan images, architectural disar-
ray is seen. Similar to thick atypical nevi, there is a lack of normal
DEJ signal intensity, indicating effacement of the junction. Instead
of linear, well-demarcated sections of epidermis, DEJ, and dermis,
the signal intensities are relatively homogenous throughout. Not only
are melanoma rete ridges no longer as accentuated as benign nevi,
but they are also shorter in length. Rete ridges, although rarely
present in melanoma, display a significantly erratic profile compared
to the consistent undulating pattern in benign nevi. Dense clusters of
melanocytic nests and increased vascularity are seen. Differentiating
features particular to melanoma OCT images are dermal shadows®8!
(Figure 6c) seen on OCT images of MIS and invasive melanomas and
hyper-reflective vertical icicle-shaped structures reaching the reticular

dermis for invasive melanomas.”?:80
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FIGURE 5 Dermoscopy photos of selected atypical nevi in phacomatosis pigmentokeratotica that may cause clinical suspicion of worrisome

morphological atypia.

3.2 | OCT quantitative analysis
3.2.1 | Attenuation coefficient calculations

Initially, we attempted an unsupervised segmentation method by
assessing only AC values of four benign nevi and four melanomas. We
selected 20 ROI vertical segments (10 pixels in width x 150 pixels in
depth), and divided each ROl into seven horizontal sections, separating
the individual ROls into epidermis (depth 1), DEJ (depth 2), superficial
papillary dermis (depth 3), mid-papillary dermis (depths 4 and 5), deep
papillary dermis (depth 6), and superficial reticular dermis (depth 7)
layers. Melanoma demonstrated lower AC values compared to benign
nevi of PPK, especially at depths 1 (Figure 6), 3, and 7. For depths 2, 3,
5, and 6, 50% of the time, melanoma had higher AC values compared
to benign nevi of PPK. In total, 18 out of 28 depth profiles (64.0%)
of melanoma studied had lower AC values. For eight out of 28 depth
profiles (28.0%), melanoma displayed higher AC values. For two out
of 28 depth profiles (0.07%), PPK-benign nevi ACs were comparable
to melanoma. However, we found that these results had limited appli-
cability and needed a wider scale, which initiated the use of our SVM
supervised algorithm.

3.2.2 | Machine learning algorithm

A total of 86 OCT images were used to train and test the SVM model
and algorithm. For the training phase, 74 OCT images were used (37
pigmented lesions in PPK and 37 melanoma). For the testing phase,
12 OCT images were used (six pigmented lesions in PPK and six
melanoma). Each ROI (10 pixels in width x 150 pixels in depth) per OCT

image was fed into the SVM feature extraction algorithm for image seg-
mentation. A total of 9271 ROIs were extracted for the training set and
1809 ROIs were extracted for the testing set. During the test phase, a
whole OCT image of either pigmented lesion in PPK or melanoma was
used. The “Predicted Class Winner” indicates the class chosen with the
highest probability based on ROI classification. Based on our results
(Table 1), our algorithm was able to correctly classify whether or not
the OCT image was truly benign or melanoma.

For our binary classification, two classes were assigned: benign or
melanoma. The confusion matrix (Table 2) represents our model’s per-
formance in identifying benign optical features in pigmented lesions
in PPK. To evaluate the performance of the method, true positive
(TP), true negative (TN), false positive (FP), and false negative (FN)
values were calculated. TP indicates the number of lesions cor-
rectly classified. TN indicates the number of lesions that have been
truly rejected. FP indicates the number of lesions that were incor-
rectly detected. FN indicates the number of lesions that were falsely
rejected.

From the confusion matrix, precision and recall values were calcu-
lated from TP, TN, FP, and FN calculations. Precision quantifies the
number of predicted positive classifications that truly belong to a pos-
itive class, also described as the reliability of the model. Precision
reflects the ratio of the truly classified positive sample set to total num-
ber of positively classified samples. The precision formula is shown
below:

True positive

2
True positive + False negative @

Precision =

Recall quantifies the number of predicted positive classifications made

from the total number of positive examples from our set of data,

9SUDIT Suowwoy) dAnea1) dqesrjdde oy) Aq pouroaos are s9[ONIR Y 1SN JO s3] 10f AIeIqIT Ul AI[IAL UO (SUONIPUOI-PUB-SULI)/WOD" KJ[1m’ KIeiqioul[uo//:sd)y) SUONIPUO)) pue SULd [, 9yl 39S *[£20T/60/60] U0 A1eiqi suljuQ A9iA ‘Aueunon oueIyoo)) £q LLE¢ 1 MS/[ 11 01/10p/wod K3[im’ Kreiqiautjuo//:sdny woiy papeojumod ‘9 ‘€70z ‘9+80009 1



LEE ET AL.

* | WILEY

FIGURE 6 Optical coherence tomography (OCT) image comparisons of normal skin (a), nevus (b), and melanoma (c). (a) OCT image of normal
skin. Neatly arranged skin layer architecture is observed. Yellow bracket: stratum corneum aka skin entrance signal. Orange line: epidermis. Green
line: dermis with bright collagen fibers. Red dashed ovals: blood vessels. (b) OCT image of nevus. Blue arrows: elongated rete ridges. Pink dashed
line: rete ridge fusion. Yellow bracket: stratum corneum aka skin entrance signal. Orange line: epidermis. Green line: dermis. (c) OCT image of
melanoma in situ. Overall architectural disarray is notable, indicated by loss of a well-delineated epidermis, dermis, and dermal-epidermal junction
(DEJ). Dermal shadows (white arrows) are characteristic of melanoma on OCT. White arrows: vertical dermal shadows. Yellow bracket: stratum
corneum aka skin entrance signal. Orange line: epidermis. Green line: dermis.

also described as the ability of the model to classify positive sam-
ples.However, if the model detects all of the positive samples, recall
will be 100% even if all negative samples were classified as positive,
incorrectly. The recall formula is shown below:

True positive
True positive + False positive

3

Recall =

Finally, the F1 score, which combines precision and recall, is calculated.

The calculation for the F1 score is demonstrated in the formula below:

_ Precision x Recall

Fi= Precision + Recall

4

For the testing phase in our SYM model for benign lesions, the precision

calculation was 79%, with recall of 82% and F1 score of 81%. For the

testing phase for melanoma lesions, the precision calculation was 81%,
with recall of 78% and F1 score of 80%. The data are represented below
(Table 3).

4 | DISCUSSION

PPK is a rare epidermal nevus syndrome characterized by the coexis-
tence of nevus sebaceous and SLN with additional extracutaneous syn-
dromic features that involve multiple organ systems.282 Melanocytic
proliferations within SLN may consist of many types of nevi which may
include dysplastic, Spitz, and compound, oftentimes with generalized
atypia. Such worrisome features may prompt clinicians to excise these

lesions for suspicion of malignancy. However, for patients with PPK,

9SURDIT Suowwoy) dAanea1) djqesrjdde o) Aq pouroaos are s9[ONIR Y SN JO $I[NI 10J AIRIQIT dUIUQ) AI[IAL UO (SUONIPUOI-PUB-SULI)/ WO KJ[1m’ AIeIqi[oul[uo//:sdy) SUONIPUO)) pue SULId [, 3y 39S *[£207/60/60] U0 A1eiqi surjuQ Ko[ip ‘Kueurion oueryoo)) £q £LE€ " MS/[ 111 01/10p/wod K3[im’ Kreiqijaurjuo//:sdny woly papeojumod ‘9 ‘€70z ‘9800091



LEE ET AL.

WILEY 122

TABLE 1 Test case results for benign versus melanoma classification using support vector machine and Gabor transform wavelet feature.

Number of roi
Case number True class per image
Case 1 Melanoma 150
Case 2 Melanoma 150
Case 3 Melanoma 147
Case 4 Melanoma 150
Case 5 Melanoma 150
Case 6 Melanoma 150
Case7 Benign 152
Case 8 Benign 152
Case 9 Benign 152
Case 10 Benign 152
Case 11 Benign 152
Case 12 Benign 152

Abbreviation: ROI, region of interest.

TABLE 2 Confusion matrix of our binary classification model.

Predicted

Ground truth Positive Negative
Positive 746 166
Negative 193 704

Note: True positive: 746, true negative: 704, false positive: 193, and false
negative: 166.

TABLE 3 Precision, recall, and F1 score for benign and melanoma
classification using support vector machine and Gabor transform
wavelet features.

Precision Recall F1score
Benign 79% 82% 81%
Melanoma 81% 78% 80%

biopsy of a large number of these melanocytic lesions may not be
physically feasible, posing a challenge during evaluation. In a retro-
spective study analyzing biopsy rates of 18 485 biopsies of melanocytic
proliferations, only 8.6% of them were diagnosed melanoma-in-situ or
invasive melanoma.®® Consequently, non-invasive imaging and other
technologies have been developed in an attempt to decrease biopsy
numbers; however, biopsies remain the gold standard. According to
a Cochrane analysis, swept-source OCT currently has a specificity of
61% in the discrimination of melanoma from nevi*® and additional
studies have been able to increase the specificity to 80%.31 The
aim of our study was to investigate if a post-OCT imaging algorithm
could confirm benign features of pigmented lesions in a patient
with PPK, without necessitating invasive biopsy procedures. We
have demonstrated that by implementing SVM, a high-performance
machine learning method, and Gabor wavelet transformation feature

extraction, we have been able to confirm that the selected pigmented

Number of Number of
predicted roi predicted roi Predicted class
as benign as melanoma winner
33 117 Melanoma
33 117 Melanoma
32 115 Melanoma
30 120 Melanoma
40 110 Melanoma
25 125 Melanoma
103 49 Benign
106 46 Benign
127 25 Benign
132 20 Benign
137 15 Benign
141 11 Benign

lesions imaged in PPK were benign. Furthermore, by implementing
a backscattering equation followed by the calculation of ACs, we
observed intrinsic differences in values between nevi in PPK when
comparing them to melanoma.

Machine learning research in the scope of melanoma and nevi
differentiation has previously been applied to dermoscopic and non-
dermoscopic gross images of the lesion with pixel-by-pixel analysis.8*
SVM with Gabor wavelet transformation applications to melanoma
versus nevi has been reported, but with analysis of histopathologic
slide and dermoscopic images.2>¢ We are the first and only study thus
far to apply SVM learning in conjunction with Gabor wavelet transfor-
mation to swept-source OCT imaging of melanoma and benign nevi.
Based on our training and testing set, we conclude that our algorithm
was successfully able to predict benign diagnosis. Our results indicate a
potential increased applicability of these methods to studies of a larger
sample size.

Tissues have intrinsic optical properties that allow for the detec-
tion of changes in light scattering, absorption, and attenuation, which
affect AC.87 By implementing the study of AC in our algorithm, we
are able to discern why benign features can be discriminated from
malignancy in OCT. Lower ACs indicate tissue features that are more
absorbent and more transparent to light, and higher ACs indicate fea-
tures that reflect or are more opaque to light.8” This is based on
microstructure size, density, and shape, chromophore concentration,
and cellularity order and disorder. During tumorigenesis, these opti-
cal properties change due to neoplastic disarray of normal cellular
structure, allowing OCT to visualize these changes. OCT is sensitive
in detecting the presence of neoplasm. However, specificity is low due
to interrelated optical characteristics of tissue characteristics.3188 In
this study, our methods of post-image processing and analysis are able
to identify and classify discrete patterns within OCT imaging, yield-
ing F1 test scores of 81% and 80% for benign nevi and melanoma,

respectively.
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The microarchitecture of benign nevi is vastly different from
melanoma, which contributes to the differences in AC values. Nevi
may have higher AC values than melanoma due to less architec-
tural effacement. Notably, epidermal hyperplasia, commonly seen in
benign lesions, may contribute to higher AC values.8? Compound nevi
are characterized by compact hyperkeratosis, orthokeratosis, and
hypergranulosis.?>?! Keratin in the epidermis exhibits bright light
scattering, which decreases the absorption of light, thus increasing AC,
as demonstrated in our results.”? Additionally, in Spitz nevi lesions,
presence of Kamino bodies in the epidermis may cause an increase
in AC values in pigmented lesions in PPK. Kamino bodies, which are
absent in melanomas, are hyaline structures that trichrome stain
similarly to collagen.”®

Features that indicate malignancy, as seen in melanoma, include
larger amounts of cytoplasm within melanocytes. Cytoplasm poorly
scatters light, which causes a reduction in AC values compared to
nevi.?* Melanoma epidermal ACs are 10 times lower than those
of normal skin, indicating that the epidermis is more translucent
compared to nevi. As such, light scattering is dependent on refrac-
tive index mismatch as the incident light beam moves through
altered architecture.81-7> Organelles within cells, such as the nucleus,
also determine light scattering capabilities.?® Features that define
melanoma include larger nuclear to cytoplasmic ratio, nuclear hyper-
chromasia, mitotic activity, and pleomorphism.¢%7 In melanoma, large
nuclei with greater DNA content indicate rapid division of tumor
cells, which display higher light scattering consistent with increased
interception of light with increased smaller structures.”*

Melanocytic maturation or lack thereof define benign nevi and
melanoma, respectively. In benign nevi, melanocyte maturation is
present, indicated by proliferative melanocytic nests beginning at the
epidermis, trickling down to single file melanocytes toward the dermis.
Alack of melanocyte maturity with clumps of disorganized melanocytic
nests toward the dermis is a defining feature of melanoma.”®?? These
subtle differences may be observed in depth profiles where pigmented
lesions ACs in PPK are higher than melanoma ACs. Because nevi
have singular melanocytes entering the dermis, areas surrounding
these dermal melanocytes may consist of lamellar and/or concen-
tric dermal fibrosis, as demonstrated in compound dysplastic nevi.1%0
Compared to normal skin, smaller AC standard deviations may be
observed in melanoma and atypical nevi due to greater tissue homo-
geneity in melanocyte content. For example, as the incident light enters
melanoma or atypical nevi, it will encounter a maturation axis of con-
sistent melanocytes. In contrast, in normal skin, layers of the skin are
neatly organized with microstructures such as hair follicles, blood ves-
sels, and sweat glands interweaved in their respective layers. As the
light encounters different layers and different microstructures, sig-
nal intensities are observed on OCT, contributing to a wider range
of AC values across each depth. Additionally, normal skin is sharply
defined by the DEJ, which is characterized by collagen fibrils. Both
melanoma and nevi lack a similar DEJ intensity, indicating the lack of
organized band of collagen density and architectural disarray.1°® All
of these factors allow for meaningful pattern recognition by our SVM

algorithm.

Swept-source OCT allows for higher scan rate and less motion
artifacts, allowing for improved image contrast.191102 However, lim-
itations include light signal intensity decay, artifacts such as blood
vessels, speckle noise produced in the OCT image, tissue or OCT probe
motion, and blurring, all of which could affect pixel value and thus AC
calculations.’°1 Bright signal intensities, such as high melanin pigment
content, could reflect the light signal, thereby obstructing further light
penetration to regions below. While resolution of OCT has not been
able to display morphology of single cells, clear architectural changes
can be seen. With implementation of post-image processing by analyz-
ing optical properties and AC values of melanoma, PPK-atypical nevi,
and normal skin, we can further characterize tissue features without
biopsy. Often, however, to accurately diagnose dysplastic or Spitz nevi
from melanoma, discrete and subtle histological findings must be seen.

Machine learning applications have limitations as well. Because
machine learning is highly dependent on the datait is given, the quality
of images must be clear and accurate. Poor-quality images may cause
machine learning to draw inaccurate conclusions and thus must be
properly vetted.10% Additionally, machine learning does not take into
consideration the effect of other physiological or pathological etiolo-
gies that might affect the presentation. Thus, machine learning and
artificial intelligence in the scope of dermatologic applications should
be used in combination with a physician’s clinical interpretation to
ensure a comprehensive diagnostic approach to melanocytic lesion
management. In our study specifically, due to many options of feature
extraction and selection methods, fine-tuning these combinations may

continue to optimize our method’s specificity score.

5 | CONCLUSION

Swept-source OCT has been demonstrated to be a promising tech-
nological advancement in a step toward potentially decreasing biopsy
numbers. While OCT lacks the ability to discriminate detail at the cel-
lular level, the addition of post-image processing and analysis by SVM
machine learning, Gabor wavelet transformation, and AC has demon-
strated the ability to confirm benign features in pigmented lesions in a
patient with PPK. Studies with larger sample sizes must be explored to
further investigate the utility of this non-invasive post-image analytical
approach to pigmented lesions.
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